Perfect Splines and Hermite-Birkhoff Interpolation

T. N. T. GOODMAN

School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia Communicated by G. G. Lorentz

Received November 22, 1977

For a function f_0 in the Sobolev space $W_{\infty}[a, b]$, let $F(f_0)$ be the set of all functions f in $W_{\infty}[a, b]$ satisfying the interpolation condition $f^{(j)}(x_i) = f_0^{(j)}(x_i) \forall (i, j)$ with $e_{ij} = 1$, where $a = x_1 < x_2 < \cdots < x_k = b$ and $E = ||e_{ij}||_{i=1}^{k} \sum_{j=0}^{m-1} is$ an incidence matrix. We investigate existence and extremal properties of perfect splines in $F(f_0)$ under certain conditions on E.

1. INTRODUCTION

By an incidence matrix we shall mean a matrix of the form $E = ||e_{ij}||_{i=1}^{k} \sum_{j=0}^{m-1}$, where for all *i*, *j*, $e_{ij} = 0$ or 1. For any incidence matrix *E* and real vector $x = (x_1, x_2, ..., x_k), x_1 < x_2 < \cdots < x_k$, we are interested in functions *f* satisfying the interpolation conditions

$$f^{(i)}(x_i) = y_i^{(j)}, \forall (i, j) \text{ with } e_{ii} = 1,$$

where the $y_i^{(j)}$ are given constants.

This general form of interpolation was first studied by G. D. Birkhoff [2]. Later Schoenberg [12] revived interest in such interpolation, which he called Hermite-Birkhoff (HB) interpolation, and introduced the notion of an incidence matrix. Since then, HB interpolation has been extensively studied in the literature.

We shall be concerned particularly with the space $\mathscr{S} = \mathscr{S}(E) = \mathscr{S}(E, x) = \{f: f \mid [x_i, x_{i+1}) \in \pi_{m-1}, i = 1, 2, ..., k-1, f \mid (-\infty, x_1) = f \mid [x_n, \infty) = 0, f^{(m-1-j)}(x_i^{-}) = f^{(m-1-j)}(x_i^{+}), \forall (i, j) \text{ with } e_{ij} = 0\}, \text{ where } \pi_{m-1} \text{ denotes the class of polynomials of degree at most } m-1. \text{ Thus } \mathscr{S} \text{ comprises spline functions of degree } m-1 \text{ with knots at } x_1, x_2, ..., x_k \text{ which vanish outside } [x_1, x_k] \text{ and whose continuity at the knots is dictated by the matrix } E.$

In Section 2 of this paper we study various properties of \mathscr{S} , derived largely from a result of Schumaker [14] concerning bounds for the numbers of zeros of functions in \mathscr{S} . In Section 3 we then apply some of the results of Section 2 to prove Theorems 1 and 2 below.

In order to state these theorems we shall need some terminology. Following Schoenberg [12], we say an incidence matrix E satisfies the *Polya condition* if

$$\sum_{j=0}^{p} \sum_{i=1}^{k} e_{ij} \ge p+1, p=0, 1, ..., m-1$$

By a block in E we mean a sequence $\{(i, j)\}, j = \ell, \ell + 1, ..., \ell + p - 1$ with $e_{ij} = 1 \ \forall (i, j)$ in the sequence and $e_{i(\ell-1)}, e_{i(\ell+p)} \neq 1$. The block is called even or odd as p is even or odd. Following Lorentz and Zeller [10], we say the block is supported if $\exists i_1, i_2, j_1, j_2$ with $i_1 < i < i_2$ and $j_1, j_2 < \ell$ and $e_{i_2 j_1} = e_{i_2 j_2} = 1$. We shall call the block semi-supported if 1 < i < k and $\exists i_1, j_1$, with $i_1 \neq i, j_1 < \ell$ and $e_{i_1 j_1} = 1$.

We denote by W_{∞} [a, b] the Sobolev space

 $\{f \in C^{(m-1)}[a, b]: f^{(m-1)} \text{ abs. cont. and } f^{(m)} \in L_{\infty}[a, b]\}.$

For *E*, *x* as above, we let $a = x_1$, $b = x_k$ and define a set of linear functional on $W_{\infty}^m[a, b]$ by $\Lambda = \Lambda(E) = \{\lambda_{ij}: e_{ij} = 1\}$ where $\lambda_{ij}(f) = f^{(i)}(x_i)$ For $f_0 \in W_{\infty}^m[a, b]$, we let $F(f_0) = \{f \in W_{\infty}^m[a, b]: \lambda(f) = \lambda(f_0), \forall \lambda \in \Lambda\}$.

By a perfect spline on [a, b] of degree *m* with interior knots at $\xi_1, \xi_2, ..., \xi_n$ in (a, b), we mean a function of the form

$$S(x) = \sum_{i=0}^{m-1} a_i x^i + c \left[x^m + 2 \sum_{i=1}^n (-1)^i (x - \xi_i)^m \right]$$

for some real constants a_0 , a_1 ,..., a_{m-1} and c.

We can now state the main results of Section 3.

THEOREM 1. If E has no supported odd blocks, then $F(f_0)$ contains a perfect spline g of degree m with less than dim \mathscr{S} interior knots and $||g^{(m)}||_{\infty} = \inf\{||f^{(m)}||_{\infty} : f \in F(f_0)\}.$

THEOREM 2. Suppose E satisfies the Pólya conditions and has no semisupported odd blocks. Then for any $A > ||f_0^{(m)}||_{\infty}$, $F(f_0)$ contains precisely two perfect splines g, h with $||g^{(m)}||_{\infty} = ||h^{(m)}||_{\infty} = A$ and no more than dim $\mathscr{S} = n$ interior knots. For any $f \in F(f_0)$ with $||f^{(m)}||_{\infty} \leq A$,

$$\min(g(x), h(x)) \leqslant f(x) \leqslant \max(g(x), h(x)), \, \forall x \in (a, b).$$

Furthermore g(or h) has exactly n interior knots $\alpha_1 < \alpha_2 < \cdots < \alpha_n$ which are the unique set of points such that

$$\psi(a) - 2\psi(\alpha_1) + 2\psi(\alpha_2) - \dots + 2(-1)^n \psi(\alpha_n) + (-1)^{n+1} \psi(b)$$

= $A^{-1} \int_a^b f_0^{(m)} \psi' \left(\text{or} - A^{-1} \int_a^b f_0^{(m)} \psi' \right), \forall \psi \text{ with } \psi' \in S.$

Theorem 1 was proved by Karlin [8] for the case of quasi-Hermite E. De Boor [3] gave a simple proof for Hermite E and our proof of Theorem 1 is a direct generalisation of this. Our proof of Theorem 2 is a generalisation of the work of Lee and the author in [6], where the result was proved for Hermite E.

2. Some Properties of $\mathscr{S}(E)$

Let E be an incidence matrix and let

$$K = K(E) = \sum_{j=0}^{m-1} \sum_{i=1}^{k} e_{ij}.$$

For any f in \mathscr{S} we denote the number of zeros of f by Z(f), where zeros are counted as in Schumaker [14]. We say f in \mathscr{S} has exact degree r if $f^{(r)} \neq 0$ and $f^{(r+1)} = 0$. We shall denote by b = b(E) the number of supported odd blocks in E. The following theorem is a special case of a result of Schumaker [14], which is an extension and improvement of results of Birkhoff [2], Ferguson [4] and Lorentz [9].

THEOREM I (Schumaker [14]). If f in \mathscr{S} has exact degree m-1, then Z(f) < K + b - m.

For any incidence matrix $E = \|e_{ij}\|_{i=1}^{k} \sum_{j=0}^{m-1}$ and for any $1 \le \alpha \le \beta \le k$, $0 \le \gamma \le \delta \le m-1$, we denote by $E_{(\alpha,\beta)}^{(\nu,\delta)}$ the submatrix $\|e_{ij}\|_{i=\alpha}^{\beta} \sum_{j=\nu}^{\delta}$ and put $E_{(1,k)}^{(\nu,\delta)} = E^{(\nu,\delta)}$, $E_{(\alpha,\beta)}^{(0,m-1)} = E_{(\alpha,\beta)}$. We say *E* satisfies the relaxed strong Pólya conditions (RSPC) if $K + b \ge m$ and $K(E^{(0,r)}) + b(E^{(0,r)}) > r + 1$, r = 0, 1,..., m - 2. As the terminology suggests, these conditions are weaker than the strong Pólya conditions, e.g. see Sharma [15]. They can be shown to reduce to the strong Pólya conditions when b = 0.

Now take any incidence matrix E and suppose f in \mathscr{S} has exact degree m-1. Then by Theorem I, K+b-m>0. Also for r=0, 1, ..., m-2, $f^{(m-1-r)}$ is in $\mathscr{S}(E^{(0,r)})$ and $f^{(m-1-r)}$ has exact degree r. So $K(E^{(0,r)}) - (r+1) > 0$ and hence E satisfies RSPC.

For any incidence matrix E, we define $s = s(E) = \max\{r: \exists f \in \mathscr{S} \text{ with} exact degree <math>r\}$. Then $\mathscr{S}(E) = \mathscr{S}(E^{(m-1-s,m-1)})$ and $E^{(m-1-s,m-1)}$ satisfies RSPC. In practice we may not know the value of s(E) for a given E. However we can always find by inspection the maximum integer t for which $E^{(m-1-t,m-1)}$ satisfies RSPC. Then $t \ge s$ and $\mathscr{S} = \mathscr{S}(E^{(m-1-t,m-1)})$. If $E^{(r,m-1)}$ does not satisfy RSPC for any r = 0, 1, ..., m - 1, then $\mathscr{S} = 0$. Thus when studying properties of $\mathscr{S}(E)$, it is sufficient to consider E satisfying RSPC.

LEMMA 2.1. If E satisfies RSPC, then

$$K(E^{(r,m-1)}) + b(E^{(r,m-1)}) + r \leq K + b, r = 0, 1, ..., m - 1.$$

Proof. The proof is by induction on r. It is trivially true for r = 0. Assume it is true for r = t, some $0 \le t < m - 1$. First suppose the first column of $E^{(s,m-1)}$ contains some 1. Then $K(E^{(s+1,m-1)}) < K(E^{(s,m-1)})$ and $b(E^{(s+1,m-1)}) \le b(E^{(s,m-1)})$. So $K(E^{(s+1,m-1)}) + b(E^{(s+1,m-1)}) + s + 1 \le K(E^{(s,m-1)}) + b(E^{(s,m-1)}) + s \le K + b$.

Next suppose that first column of $E^{(s,m-1)}$ contains no 1. Then any supported odd block in $E^{(0,s)}$ is also a supported odd block in E and so $b(E) \ge b(E^{(0,s)}) + b(E^{(s+1,m-1)})$. Thus $K^{(s+1,m-1)} + b(E^{(s+1,m-1)}) + s + 1 \le K(E) - K(E^{(0,s)}) + b(E) - b(E^{(0,s)}) + s + 1 = K + b + s + 1 - \{K(E^{(0,s)}) + b(E^{(0,s)})\} < K + b$, since E satisfies RSPC.

PROPOSITION 2.1. If E satisfies RSPC, then for non-zero f in \mathcal{S} , Z(f) < K + b - m.

Proof. Take any f in \mathscr{S} and suppose it has exact degree r. Then f is is in $\mathscr{S}(E^{(m-1-r,m-1)})$ and so by Theorem I and Lemma 2.1,

$$Z(f) < K(E^{(m-1-r,m-1)}) + b(E^{(m-1-r,m-1)}) - (r+1) \leq K + b - m.$$

It will be convenient to introduce further notation. If $\mathscr{S}(E) \neq 0$, we define $\sigma = \sigma(E) = K(E^{(m-1-s,m-1)}) + b(E^{(m-1-s,m-1)}) - s - 1$. If $\mathscr{S}(E) = 0$, we define $\sigma(E) = 0$.

COROLLARY 2.1. For any E and non-zero f in \mathcal{S} , $Z(f) < \sigma$.

Proof. Since $\mathscr{S} = \mathscr{S}(E^{(m-1-s,m-1)})$ and $E^{(m-1-s,m-1)}$ satisfies RSPC, $Z(f) < K(E^{(m-1-s,m-1)}) + b(E^{(m-1-s,m-1)}) - (s+1) = \sigma$.

LEMMA 2.2. For any E and $1 < \alpha < k$,

$$\sigma(E) \geq \sigma(E_{(1,\alpha)}) + \sigma(E_{(\alpha,k)}).$$

Proof. Let s = s(E), $s_1 = s(E_{(1,\alpha)})$ and $s_2 = s(E_{(\alpha,k)})$. We assume, without loss of generality, that $s_1 \ge s_2$. Since $\mathscr{S}(E_{(1,\alpha)}) \subseteq \mathscr{S}(E)$, then $s \ge s_1$. Since $E^{(m-1-s,m-1)}$ satisfies RSPC, then by Lemma 2.1, $\sigma(E) = K(E^{(m-1-s,m-1)}) + b(E^{(m-1-s,m-1)}) - s - 1 \ge K(E^{(m-1-s_1,m-1)}) + b(E^{(m-1-s_1,m-1)}) - s_1 - 1$. Now

$$K(E^{(m-1-s_1,m-1)}) \ge K(E^{(m-1-s_1,m-1)}_{(1,\alpha)}) + K(E^{(m-1-s_2,m-1)}_{(\alpha,k)}) - s_2 - 1$$

and

$$b(E^{(m-1-s_1,m-1)}) \ge b(E^{(m-1-s_1,m-1)}_{(1,\alpha)}) + b(E^{(m-1-s_2,m-1)}_{(\alpha,k)}).$$

So

$$\begin{aligned} \sigma(E) &\geq K(E^{(m-1-s_1,m-1)}) + b(E^{(m-1-s_1,m-1)}) - s_1 - 1 \\ &\geq K(E^{(m-1-s_1,m-1)}) + b(E^{(m-1-s_1,m-1)}) - s_1 - 1 + K(E^{(m-1-s_2,m-1)}) \\ &+ b(E^{(m-1-s_2,m-1)}) - s_2 - 1 = \sigma(E_{(1,\alpha)}) + \sigma(E_{(\alpha,k)}). \end{aligned}$$

For any finite set S, we shall denote the number of elements in S by |S|.

LEMMA 2.3. Suppose f in $\mathscr{S}(E, x)$ vanishes on a set S, where $|S \cap (x_i, x_j)| \ge \sigma(E_{(i,j)})$, for all $1 \le i < j \le k$. Then f = 0.

Proof. Suppose $f \neq 0$ and choose $1 \leq i < j \leq k$ so that f is oscillating on (x_i, x_j) but vanishes on (α, x_i) and (x_j, β) for some $\alpha < x_i, x_j$. Define g in $\mathscr{S}(E_{(i,j)})$ so that $g(x) = f(x) \ \forall x \in (x_i, x_j)$. Then $\Lambda(g) \geq |S \cap (x_i, x_j)| \geq \sigma(E_{(i,j)})$, which contradicts Corollary 2.1.

PROPOSITION 2.2. If E satisfies RSPC, then dim $\mathscr{S} \leq K + b - m$.

Proof. We first construct a set S with $|S| = \sigma(E)$ and $|S \cap (x_i, x_j)| \ge \sigma(E_{(i,j)})$, for all $1 \le i < j \le k$. Let $S_1 = \emptyset$. By Lemma 2.2, $\sigma(E_{(1,j)}) \ge \sigma(E_{(1,i)})$ for $1 < i < j \le k$, and so we may define S_r , r = 2, 3, ..., k, recursively so that $S_{r-1} \subseteq S_r$, $S_r - S_{r-1} \subset (x_{r-1}, x_r)$ and $|S_r| = \sigma(E_{(1,r)})$. For $1 < i < j \le k$, $|S_j| = \sigma(E_{(1,j)}) \ge \sigma(E_{(1,i)}) + \sigma(E_{(i,j)}) = |S_i| + \sigma(E_{(i,j)})$ and so $|S \cap (x_i, x_j)| = |S_j - S_i| = |S_j| - |S_i| \ge \sigma(E_{(i,j)})$.

Now suppose dim $\mathscr{S} > K + b - m$. Since *E* satisfies RSPC, $K + b - m \ge \sigma(E)$ by Lemma 2.1 and so dim $\mathscr{S} > \sigma(E) = |S|$. Thus there is a non-zero *f* in \mathscr{S} which vanishes on *S*, contradicting Lemma 2.3.

COROLLARY 2.2. For any E, dim $\mathscr{S} \leq \sigma$.

Proof. Since $\mathscr{S}(E) = \mathscr{S}(E^{(m-1-s,m-1)})$ and $E^{(m-1-s,m-1)}$ satisfies RSPC, dim $\mathscr{S}(E^{(m-1-s,m-1)}) \leq K(E^{(m-1-s,m-1)}) + b(E^{(m-1-s,m-1)}) - (s+1) = \sigma(E).$

Proposition 2.2 can be rephrased in a manner more closely related to the classical theory of HB interpolation. We define $N(E) = \{ p \in \pi_{m-1} : p^{(j)}(x_i) = 0, \forall (i, j) \text{ with } e_{ij} = 1 \}$. Then it follows from the general theory of Jerome and Schumaker [7] that dim $\mathscr{S} = K - m + \dim N(E)$. Thus Proposition 2.2 is equivalent to:

112

PROPOSITION 2.2*. If E satisfies RSPC, then dim $N(E) \leq b$.

When b = 0, this gives a well-known result of Atkinson and Sharma [1].

COROLLARY 2.3. If b(E) = 0, then dim $\mathcal{S} = \sigma$.

Proof. dim $\mathscr{S} = \dim \mathscr{S}(E^{(m-1-s,m-1)}) = K(E^{(m-1-s,m-1)}) - (s+1) + \dim N(E^{(m-1-s,m-1)}) = K(E^{(m-1-s,m-1)}) - (s+1) = \sigma$, since

$$b(E^{(m-1-s,m-1)}) = 0.$$

The following result and its proof are direct generalisations of work by Lee and the author in [6].

PROPOSITION 2.3. If b(E) = 0 and $\alpha_1, \alpha_2, ..., \alpha_r$ are distinct points in $(a, b), r < \dim \mathcal{S}(E)$, then there is a non-zero function in $\mathcal{S}(E)$ which changes sign precisely at $\alpha_1, \alpha_2, ..., \alpha_r$, (0 can be taken as + or -).

Proof. First note that, by Corollaries 2.1 and 2.3, for any non-zero f in $\mathscr{S}(E)$, $\Lambda(f) < \dim \mathscr{S}(E)$. We now fix $m \ge 1$ and prove by induction in dim $\mathscr{S}(E)$. If dim $\mathscr{S}(E) = 1$, then any non-zero element of $\mathscr{S}(E)$ has no change of sign and so the result is true.

Take n > 1 and suppose the result is true for dim $\mathscr{S}(E) < n$. Take E with dim $\mathscr{S}(E) = n$ and $\alpha_1, \alpha_2, ..., \alpha_r$. If r < n - 1, we delete 1's from the entries of E to give a matrix \tilde{E} with dim $\mathscr{S}(\tilde{E}) = n - 1$ and $b(\tilde{E}) = 0$. Applying the induction hypothesis to \tilde{E} gives $f \in \mathscr{S}(\tilde{E}) \subset \mathscr{S}(E)$ which changes sign precisely at $\alpha_1, \alpha_2, ..., \alpha_r$.

If r = n - 1, then since dim $\mathscr{S}(E) = n$, we may choose $f \in \mathscr{S}(E)$ which is zero at $\alpha_1, \alpha_2, ..., \alpha_r$, where for i = 1, 2, ..., k, we define $f(x_i) = \frac{1}{2} \{ f(x_i^-) + f(x_i^+) \}$. If f is oscillating, then since $\Lambda(f) < n$, f must change sign precisely at $\alpha_1, \alpha_2, ..., \alpha_r$. On the other hand, if f vanishes on at least one interval in [a, b], then in each segment (x_i, x_j) on which f is oscillating, f has less than dim $\mathscr{S}(E_{(i,j)})$ zeros and so $|\{\alpha_1, \alpha_2, ..., \alpha_r\} \cap (x_i, x_j)| < \dim \mathscr{S}(E_{(i,j)})$. We can thus apply the inductive hypothesis to each of these segments to obtain the required result.

PROPOSITION 2.4. Suppose that for all $1 \le i < j \le k$, dim $\mathscr{S}(E_{(i,j)}) = \sigma(E_{(i,j)})$ and dim $\mathscr{S} = \sigma > 0$. Then for any basis f_1 , f_2 ,..., f_{σ} of \mathscr{S} , det $||f_i(\eta_j)||_{i,j=1}^{\sigma}$ has the same sign for all $\eta_1 < \eta_2 < \cdots < \eta_{\sigma}$.

 $\sigma(E_{(i,j)}) = \dim \mathscr{S}(E_{(i,j)})$. So there is a non-zero function in $\mathscr{S}(E_{(i,j)}) \subseteq \mathscr{S}$ which vanishes on $\{\eta_1, \eta_2, ..., \eta_\sigma\}$ and hence det $\|f_i(\eta_j)\|_{i,j=1}^{\sigma} = 0$.

Now fix $\eta \in T$ and $1 \leq \ell \leq \sigma$. For any number *t*, define $\xi(t) \in \mathbb{R}^{\sigma}$ by $\xi(t)_i = \eta_i$, $i \neq \ell$, and $\xi(t)_{\nu} = t$. Suppose $\xi(t) \in T$ for all *t* in some interval (c, d). Define $g \in \mathscr{S}$ by $g(t) = \det \|f_i[\xi(t)_j]\|_{i,j=1}^{\sigma}$. Then $g(\eta_i) = 0$, for $i \neq \ell$, and $g(t) \neq 0$ for $t \in (c, d)$. Choose $1 \leq \alpha < \beta \leq k$ so that $x_\alpha \leq c < d \leq x_\beta$ and *g* is oscillating on (x_α, x_β) but vanishes on (γ, x_α) and (x_β, δ) for some $\gamma < x_\alpha$ and $\delta > x_\beta$. Define *h* in $\mathscr{S}(E_{(\alpha,\beta)})$ so that $h(x) = g(x) \forall x \in (x_\alpha, x_\beta)$. Then $h(\eta_i) = 0$, $i \neq \ell$, and $|\{\eta_1, \eta_2, ..., \eta_\sigma\} \cap (x_\alpha, x_\beta)| \geq \sigma(E_{(\alpha,\beta)}) > Z(h)$, by Corollary 2.1. Thus *h* can have no zeros or jumps through zero in (x_α, x_β) except at η_i , $i \neq \ell$. So $g(t) = \det \|f_i[\xi(t)]_{i,j=1}^{\sigma}$ has the same sign throughout (c, d).

For any η , ξ in T, we write $n \sim \xi$ if one can be gained from the other by a finite number of steps, in each step varying one of the components continuously so that the vector always remains in T. From our work above we see that if $\eta \sim \xi$, then $||f_i(\eta_j)||_{i,j=1}^{\sigma}$ and det $||f_i(\xi_j)||_{i,j=1}^{\sigma}$ have the same sign. Thus to prove our result it is sufficient to show that $\eta \sim \xi$ for any η , ξ in T.

Take η , ξ in T and suppose $|\{\eta_1, \eta_2, ..., \eta_{\sigma}\} \cap (x_1, x_2)| \ge |\{\xi_1, \xi_2, ..., \xi_{\sigma}\} \cap (x_1, x_2)|$. Then we may construct η' so that $\eta \sim \eta'$ and $\{\eta'_1, \eta'_2, ..., \eta'_{\sigma}\} \cap (x_1, x_2) = \{\xi_1, \xi_2, ..., \xi_{\sigma}\} \cap (x_1, x_2)$. Similarly for i = 2, 3, ..., k - 1, we may construct successively η^i , ξ^i so that $\eta \sim \eta^i$, $\xi \sim \xi^i$ and $\{\eta_1^i, \eta_2^i, ..., \eta_{\sigma}^i\} \cap (x_1, x_{i+1}) = \{\xi_1^i, \xi_2^i, ..., \xi_{\sigma}^i\} \cap (x_1, x_{i+1})$. So $\eta \sim \eta^{k-1} = \xi^{k-1} \sim \xi$ and the result is proved.

COROLLARY 2.4. If b = 0 and dim $\mathscr{S} = \sigma > 0$, then for any basis $f_1, f_2, ..., f_\sigma$ of \mathscr{S} , det $||f_i(\eta_j)||_{i,j=1}^{\sigma}$ has the same sign for all $\eta_1 < \eta_2 < \cdots < \eta_{\sigma}$.

Proof. For any $1 \le i < j \le k$, $b(E_{(i,j)}) = 0$ and so by Corollary 2.3, dim $\mathscr{S}(E_{(i,j)}) = \sigma(E_{(i,j)})$.

We might be tempted to conjecture that if b = 0 and dim $\mathscr{S} = \sigma > 0$, then there is a basis $f_1, f_2, ..., f_{\sigma}$ of \mathscr{S} such that $f_i(\eta)$ is totally positive on $\{1, 2, ..., \sigma\} \times \mathbb{R}$, i.e. for any $\eta_1 < \eta_2 < \cdots < \eta_{\sigma}$, every minor of $||f_i(\eta_j)||_{i,j=1}^{\sigma}$ has non-negative determinant. However a counterexample is provided by the matrix

$$E = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 \ 1 & 0 & 0 & 0 \end{bmatrix}.$$

It can be seen by inspection that $\mathscr{S}(E)$ has dimension two and yet does not contain two linearly independent non-negative functions.

Total positivity can be achieved by making the rather stringent assumption that E has no supported blocks, but we do not include a proof.

3. EXISTENCE OF PERFECT SPLINES

We shall use some of the results of Jerome and Schumaker [7]. We note from [7] that $\mathscr{S}(E) = D^m \mathscr{S}(D^m, \Lambda(E))$, where D = d/dx and $\mathscr{S}(D^m, \Lambda(E))$ is the class of L_q -splines with respect to $\Lambda(E)$ for $L = D^m$.

LEMMA 3.1. Suppose the elements of $\Lambda = \Lambda(E)$ are linearly dependent when restricted to π_{m-1} . Then for any $\lambda_0 \in \Lambda$, $\exists \emptyset \in \mathscr{S}(E)$ such that if $f \in W_{\infty}^m[a, b]$ and $\lambda(f) = 0$, $\forall \lambda \in \Lambda$ with $\lambda \neq \lambda_0$, then $\lambda_0(f) = \int_a^b \emptyset f^{(m)}$.

Proof. Let $\Lambda_0 = \Lambda - \{\lambda_0\}$. By the theory of [7], $\exists g \in \mathscr{S}(D^m, \Lambda)$ with $\lambda_0(g) = 1$ and $\lambda(g) = 0$, $\forall \lambda \in \Lambda_0$. Now if $g \in \pi_{m-1}$, $\lambda(g) = 0$ $\forall \lambda \in \Lambda_0 \Rightarrow \lambda_0(g) = 0$, since the elements of Λ are linearly dependent when restricted to π_{m-1} . Thus $g \notin \pi_{m-1}$ and we may write $g^{(m)}/\int_a^b |g^{(m)}|^2 = \emptyset \in \mathscr{S}$. Now take any $f \in W_{\infty}^m[a, b]$ with $\lambda(f) = 0$ $\forall \lambda \in \Lambda_0$. Then $\lambda(f - \lambda_0(f)g) = 0$, $\forall \lambda \in \Lambda$. So by Theorem 2.1 of [7], $\int_a^b \psi\{f^{(m)} - \lambda_0(f)g^{(m)}\} = 0$ $\forall \psi \in \mathscr{S}$. Putting $\psi = \emptyset$ gives $\int_a^b \emptyset f^{(m)} = \int_a^b \emptyset \lambda_0(f)g^{(m)} = \lambda_0(f)$.

LEMMA 3.2. If $f \in F(0)$, then $\int_a^b \emptyset f^{(m)} = 0$, $\forall \emptyset \in \mathscr{S}$. Conversely, if for $g \in L_\infty[a, b]$, $\int_a^b \emptyset g = 0 \ \forall \emptyset \in \mathscr{S}$, then $g = f^{(m)}$ for some $f \in F(0)$.

Proof. If $f \in F(0)$, it follows from Theorem 2.1 of [7] that $\int_a^b \emptyset f^{(m)} = 0$, $\forall \emptyset \in \mathscr{S}$.

Now suppose that for $g \in L_{\infty}[a, b]$, $\int_{a}^{b} \otimes g = 0 \quad \forall \emptyset \in \mathcal{S}$, and let $g = h^{(m)}$. Let $\{\lambda_{1}, \lambda_{2}, ..., \lambda_{n}\}$ be a subset of Λ which when restricted to π_{m-1} form a basis for the space spanned by Λ restricted to π_{m-1} . Then we may choose $p \in \pi_{m-1}$ with $\lambda_{i}(p) = \lambda_{i}(h)$, i = 1, 2, ..., n. Putting f = h - p, we have $f^{(m)} = g$ and $\lambda_{i}(f) = 0$, i = 1, 2, ..., n.

Now take $\lambda \in A$, $\lambda \notin \{\lambda_1, \lambda_1, ..., \lambda_n\}$. Then by Lemma 3.1, $\exists \emptyset \in \mathscr{S}$ such that $\lambda(f) = \int_a^b \emptyset g = 0$ and so $f \in F(0)$.

Proof of Theorem 1. The proof is a direct generalisation of that of De Boor [3] and so we omit full details.

Let $\Pi(f_0) = \{g \in L_{\infty}[a, b]: \int_a^b \varnothing g = \int_a^b \varnothing f_0^{(m)}, \forall \varnothing \in \mathscr{S}\}$. Then by Lemma 3.2, inf $\{\|f^{(m)}\|_{\infty}: f \in F(f_0)\} = \inf\{\|g\|_{\infty}: g \in \Pi(f_0)\}$. Now if λ_0 is the linear functional on \mathscr{S} defined by $\lambda_0(\varnothing) = \int_a^b \varnothing f_0^{(m)}, \forall \varnothing \in \mathscr{S}$, then $\Pi(f_0)$ can be regarded as the set of all extensions of λ_0 to continuous linear functionals on $L_1[a, b]$. So by the Hahn-Banach theorem $\exists h \in \Pi(f_0)$ with $\|h\|_{\infty} = \inf\{\|g\|_{\infty}: g \in \Pi(f_0)\} = \|\lambda_0\|$. If we choose $\psi \in \mathscr{S}$ with $\lambda_0(\psi) = \|\lambda_0\|$, then $h(t) = \|h\|_{\infty}$ sgn $\psi(t)$ when $\psi(t) \neq 0$. Using the perturbation technique of De Boor [3] and applying Corollary 2.4, we can choose h to have constant absolute value and less than dim \mathscr{S} sign changes. The result follows.

Proof of Theorem 2. The proof is a generalisation of that of Lee and the author [6] and we omit full details.

For any $1 \leq \ell < k$, suppose $x \in (x_{\nu}, x_{\ell+1})$. We denote by E_x the matrix $\| \tilde{e}_{ij} \|_{i=1}^{k+1} \stackrel{m-1}{_{j=0}}$, where $\tilde{e}_{ij} = e_{ij}$ for $1 \leq i < \ell$, $\tilde{e}_{ij} = e_{(i-1)j}$ for $\ell < i \leq k+1$ and $\tilde{e}_{\ell j} = \delta_{oj}$. We note that since E has no semi-supported odd blocks, $b(E_x) = 0$.

It follows from a result of Atkinson and Sharma [1] that, since E obeys the Pólya conditions and b(E) = 0, N(E) = 0. Thus the elements of $\Lambda(E_x)$ are linearly dependent when restricted to Π_{m-1} . Thus by Lemma 3.1, $\exists \emptyset \in \mathscr{S}(E_x)$ such that

$$f(x) - f_0(x) = \int_a^b \phi(f^{(m)} - f_0^{(m)}), \,\forall f \in F(f_0)$$
(3.1)

It follows from Corollary 1 of [5] (also Corollary 4 of [6]) that for some $\psi \in \mathscr{S}(E_x)$ there is a function $h_x \in F(f_0)$ with $h_x^{(m)}(t) = A \operatorname{sgn} \psi(t)$ when $\psi(t) \neq 0$, and that $f(x) \leq h_x(x) \quad \forall f \in F = \{f \in F(f_0) : ||f^{(m)}|_{\infty} \leq A\}$. Using a perturbation technique similar to that of De Boor [3] and applying Corollary 2.4 to E_x , we can choose h_x so that $h_x^{(m)}$ has constant absolute value A and less than dim $\mathscr{S}(E_x) = \dim \mathscr{S} + 1$ sign changes. Similarly $\exists g_x \in F(f_0)$ such that $g_x^{(m)}$ has constant absolute value A and less than dim $\mathscr{S} + 1$ sign changes, and $g_x(x) \leq f(x), \forall f \in F$.

For convenience we call $g \in F(f_0)$ an extremal function if $g^{(m)}$ has constant absolute value A and less than dim $\mathscr{S} + 1$ sign changes. Now let g be an extremal function and suppose $g^{(m)}$ has less than dim \mathscr{S} sign changes. Then by Proposition 2.3, \exists a non-zero $\Phi \in \mathscr{S}$ which always has the same sign as $g^{(m)}$ and so $\int_a^b \Phi g^{(m)} = A \int_a^b |\Phi| > |\int_a^b \Phi f_0^{(m)}|$. But $g \in F(f_0)$ implies $\int_a^b \Phi g^{(m)} = \int_a^b \Phi f_0^{(m)}$ by Lemma 3.2. Thus if g is an extremal function, $g^{(m)}$ has precisely dim \mathscr{S} sign changes.

Now if g is an extremal function, we can apply Proposition 2.3 to give a non-zero $\Psi \in \mathscr{S}(E_x)$ which changes sign at the same points as $g^{(m)}$. By our above argument, $\Psi \notin \mathscr{S}$ and so we may choose Ψ so that, as in (3.1),

$$f(x) - f_0(x) = \int_a^b \Psi(f^{(m)} - f_0^{(m)}), \ f \in F(f_0).$$

It follows that either $g(x) \leq f(x) \forall f \in F$ or F or $f(x) \leq g(x) \forall f \in F$ and so $g(x) = g_x(x)$ or $h_x(x)$. By the same method as in [6] we may now show that if two external functions coincide at any point other than $x_1, x_2, ..., x_k$, then

116

they are identical. Thus there are precisely two extremal functions g, h and for any $f \in F$,

$$\min(g(x), h(x)) \leqslant f(x) \leqslant \max(g(x), h(x)), \forall x \in (a, b).$$

The final part of Theorem 2 follows immediately from the fact that, by Lemma 3.2, $f \in F(f_0)$ implies $\int_a^b \varnothing f^{(m)} = \int_a^b \varnothing f^{(m)}_0 \, \forall \varnothing \in \mathscr{S}$, and $\int_a^b \varnothing G = \int_a^b \varnothing f^{(m)}_0 \, \forall \varnothing \in \mathscr{S}$ implies $G = f^{(m)}$ for some $f \in F(f_0)$.

As an example of Theorem 2, let $E = ||e_{ij}||_{i=1}^{2} \prod_{j=0}^{m-1}$, where $e_{2j} = 0$ for $j = 0, 1, ..., m - \ell - 1$, some $0 < \ell \leq m$, and $e_{ij} = 1$ elsewhere. If x = (-1, 1), then $F(0) = \{f \in W_{\infty}^{m}[-1, 1]: f^{(r)}(-1) = 0, r = 0, 1, ..., m - 1, f^{(r)}(1) = 0, r = m - \ell, m - \ell + 1, ..., m - 1\}$. Theorem 2 tells us that for any A > 0, there is a perfect spline $h \in F(0)$ with $||h^{(m)}|| = A$ and at most ℓ interior nodes, and $\pm h$ are the only such functions in F(0). Moreover for any $f \in F(0)$ with $||f^{(m)}||_{\infty} \leq A$, $|f(x)| \leq |h(x)|$, $\forall x \in (-1, 1)$.

In this case \mathscr{S} restricted to [-1, 1) coincides with $\pi_{\ell-1}$ and so the nodes of h are the unique set of points α_1 , α_2 ,..., α_ℓ for which

$$\psi(-1) - 2\psi(\alpha_1) + 2\psi(\alpha_2) - \dots + 2(-1)^l \psi(\alpha_l) + (-1)^{l+1} \psi(1) = 0,$$

$$\forall \psi \in \pi_l . \tag{3.2}$$

It can be shown (e.g. by using Lemma 1 of Schoenberg [13]) that (3.2) is satisfied if $\alpha_{\nu} = -\cos(\nu \pi/(\ell + 1))$, $\nu = 1, 2, ..., \ell$, the zeros of a Chebychev polynomial of the second kind.

For $\ell = m - 1$, the above example was considered by Louboutin [11] and Schoenberg [13], who derived properties slightly weaker than those derived above.

References

- K. ATKINSON AND A. SHARMA, A partial characterization of poised Hermite-Birkhoff interpolation problems, SIAM J. Numer. Anal. 6 (1969), 230-235.
- 2. G. D. BIRKHOFF, General mean value and remainder theorems, *Trans. Amer. Math. Soc.* 7 (1906), 107–136.
- 3. C. DE BOOR, A remark concerning perfect splines, Bull. Amer. Math. Soc. 80 (1974), 724-727.
- 4. D. R. FERGUSON, Sign changes and minimal support properties of Hermite-Birkhoff splines with compact support, SIAM J. Numer. Anal. 11 (1974), 769-779.
- 5. T. N. T. GOODMAN AND S. L. LEE, Some extremal problems involving perfect splines, to appear.
- 6. T. N. T. GOODMAN AND S. L. LEE, Another extremal property of perfect spline to appear.
- 7. J. W. JEROME AND L. L. SCHUMAKER, On Lg-splines, J. Approximation Theory 2 (1969), 29-49.

T. N. T. GOODMAN

- 8. S. KARLIN, Interpolation properties of generalized perfect splines and the solutions of certain extremal problems, I, *Trans. Amer. Math. Soc.* 205 (1975), 25-66.
- 9. G. G. LORENTZ, Zeros of splines and Birkhoff's kernel, Math. Z. 142 (1975), 173-180.
- 10. G. G. LORENTZ AND K. L. ZELLER, Birkhoff interpolation, SIAM J. Numer. Anal. 8 (1971), 43-48.
- 11. R. LOUBOUTIN, Sur une "bonne" partition de l'unité, *in* "Le Prolongateur de Whitney" (G. Glaeser, Ed.), Vol. II, 1967.
- 12. I. J. SCHOENBERG, On Hermite-Birkohoff interpolation, J. Math. Anal. Appl. 16 (1966), 538-543.
- 13. I. J. SCHOENBERG, The perfect B-splines and a time optimal control problem, *Israel J.* Math. 8 (1971), 261–275.
- 14. L. L. SCHUMAKER, Toward a constructive theory of generalized spline functions, *in* "Spline Functions," Proceedings of an international symposium held at Karlsruhe, Germany, Lecture Notes in Mathematics No. 501, pp. 265–329, Springer-Verlag, Berlin/New York, 1976.
- 15. A. SHARMA, Some poised and nonpoised problems of interpolation, SIAM Rev. 14 (1972), 129–151.