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For a function f, in the Sobolev space Wxla, b], let F(f;) be the set of all func-
tions fin Wwla, b satisfying the interpolation condition f'7{(x,} = f(x) V¥ (i, /)
with e; = 1, where @ = x; <X, < " <xz = b and E = |l e;|ff_,, 7' is an
incidence matrix. We investigate existence and extremal properties of perfect
splines in F(fy) under certain conditions on E.

1. INTRODUCTION
By an incidence matrix we shall mean a matrix of the form E = || e; |[_, 7,
where for all 7, j, e;; = 0 or 1. For any incidence matrix £ and real vector
X = (X1, Xg 5oy Xg), X << Xy << ' < X;,, We are interested in functions f
satisfying the interpolation conditions

FO(x) =y, V(i j) with e, = 1,

where the ¥ are given constants.

This general form of interpolation was first studied by G. D. Birkhoff [2].
Later Schoenberg [12] revived interest in such interpolation, which he called
Hermite-Birkhoff (HB) interpolation, and introduced the notion of an
incidence matrix. Since then, HB interpolation has been extensively studied
in the literature.

We shall be concerned particularly with the space ¥ = F(E) = S(E, x) =
{ff, [xi » xi+1) Empy, i=1, 2,..,, k—1, f[(——OO, xl) :fl[xn , ) =0,
for1=0(x,7) = fm-1-0)(x,4), ¥(i, j) with e; = 0}, where =,_, denotes the
class of polynomials of degree at most m — 1. Thus % comprises spline
functions of degree m — 1 with knots at x; , X, ,..., X, which vanish outside
[x. , x) and whose continuity at the knots is dictated by the matrix E.

In Section 2 of this paper we study various properties of %, derived
largely from a result of Schumaker [14] concerning bounds for the numbers of
zeros of functions in .. In Section 3 we then apply some of the results of
Section 2 to prove Theorems 1 and 2 below.
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SPLINES AND BIRKHOFF INTERPOLATION 109

In order to state these theorems we shall need some terminology. Following
Schoenberg [12], we say an incidence matrix E satisfies the Polya condition if

» &
Z Zeij Zzp+1,p=01,.,m— I
j=0 i=1

By a block in E we mean a sequence {({,/)}, j=¢ ¢+ 1,..,+p—1
with e;; = 1 V(i, ) in the sequence and e;y_y) , €icsp) ¥ 1. The block is
called even or odd as p is even or odd. Following Lorentz and Zeller [10],
we say the block is supported if 35, , iy, j1, Jo With i} < i <iyand ji, j, </
and e; ; = e;; = 1. We shall call the block semi-supported if 1 < i < k and
iy, gy, with iy # 1, jy <Zand e;; = 1.

We denote by W, [a, b] the Sobolev space

{fe C'm-V[q, b]: f'™1) abs. cont. and f™ € L_][a, b]}.

For E, x as above, we let ¢ = x;, b = x; and define a set of linear func-
tional on W, m[a, b] by A = A(E) = {A;;: e;; = 1} where Ay (f) = f9(x,)
For f, € W, [a, b, we let F(fy) = {f€ W 2[a, b]: \(f) = M fy), YAed}.

By a perfect spline on [a, b] of degree m with interior knots at £, , &, ,..., &,
in (a, b), we mean a function of the form

S(x) = mi axt -+ ¢ [x’" +2 i (— D (x — f,-)’j]

for some real constants ag, @, ,..., G- and c.
We can now state the main results of Section 3.

THEOREM 1. If E has no supported odd blocks, then F(f,) contains a perfect
spline g of degree m with less than dim % interior knots and || g™ |, =

inf{Ilf ll: € F(fo)}

THEOREM 2. Suppose E satisfies the Pélya conditions and has no semi-
supported odd blocks. Then for any A > || f§™ ., F(f,) contains precisely two
perfect splines g, h with || g™, = || A"l = A and no more than dim ¥ = n
interior knots. For any fe F(fy) with|| f™], < 4,

min(g(x), A(x)) < f(x) < max(g(x), k(x)), Vx € (a, b).

Furthermore g(or A) has exactly » interior knots o < ap << - < ax,,
which are the unique set of points such that

Pa) — 2() + 24(on) — -+ 4+ 2(=1)" ) + (=D ()
= a7 [ g (or — a1 [ fmyr) v with g e,
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Theorem 1 was proved by Karlin [8] for the case of quasi-Hermite E.
De Boor [3] gave a simple proof for Hermite E and our proof of Theorem 1
is a direct generalisation of this. Our proof of Theorem 2 is a generalisation
of the work of Lee and the author in [6), where the result was proved for
Hermite E.

2. SOME PROPERTIES OF S(E)

Let E be an incidence matrix and let

m—-1 &

K=KE)=Y Y e;.

j=0 i=1

For any fin ¥ we denote the number of zeros of f by Z(f), where zeros are
counted as in Schumaker [14]. We say fin & has exact degree r if f -0
and fir+1) = 0. We shall denote by b = b(E) the number of supported odd
blocks in E. The following theorem is a special case of a result of Schumaker
{14}, which is an extension and improvement of results of Birkhoff [2],
Ferguson {4] and Lorentz [9].

THeoreM 1 (Schumaker (14]). If f in & has exact degree m — 1, then
Z(H)<K+b—m.

For any incidence matrix E = || ¢;; |[i_, 7' and for any | < o < f <k,

0 <y <8 <m— 1, we denote by E'g) the submatrix || ¢;; |7, }., and put
EGR = E®, EQED = Eq, 5 . We say E satisfies the relaxed strong Pdlya
conditions (RSPC) if K + b > m and K(E'?) + B(E®™) >r -+ 1, r =0,
1,..., m — 2. As the terminology suggests, these conditions are weaker than
the strong Pdlya conditions, e.g. see Sharma [15]. They can be shown to
reduce to the strong Pdélya conditions when b = 0.

Now take any incidence matrix E and suppose f in % has exact degree
m — 1. Then by Theorem I, K +b —m > 0. Also for r =0, 1,..., m — 2,
fm-1-1 igin F(EO"}and f»-1-" has exact degree r. So K(E©®") — (r + 1) >
0 and hence F satisfies RSPC.

For any incidence matrix E, we define s = s(E) = max{r: 3f€.¥ with
exact degree r}. Then F(E) = F(Etm-1-sm-D) gnd Em-1-sm-1 gatisfies
RSPC. In practice we may not know the value of s(E) for a given E. However
we can always find by inspection the maximum integer ¢ for which £¢m—1-t.m-1)
satisfies RSPC. Then ¢ > s and & = F(Etm-1-tm-1) [f F.m-1 does not
satisfy RSPC for any r == 0, 1,..., m — 1, then .% = 0. Thus when studying
properties of #(E), it is sufficient to consider E satisfying RSPC.
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LeMMA 2.1. If E satisfies RSPC, then
K(Emm-1)y A p(Erm- D)y L r <K+ b, r=0,1,.,m— 1.

Proof. The proof is by induction on r. It is trivially true for r = 0.
Assume it is true for r = ¢, some 0 < ¢t <<m — 1. First suppose the first
column of E!m-1 contains some 1. Then K(E(+tm-1) < K(Et-1) and
B(Ets+1m=1y < p(Etem-1). So K(E(+lm-1) - p(Elstim-1) L s 4 | <
K(Etsm1) -+ p(Esm-1) + s < K 4 b.

Next suppose that first column of E's™-1 contains no 1. Then any sup-
ported odd block in E®# is also a supported odd block in E and so b(E) >
B(E©") - p(E(stlm-1) Thys K(s+l.m=1 L p(Elstlm-1) £ o 4 1 < K(E) —
K(E©®®) - b(E) — B(E®®) + s+ 1 =K+ b+ s + | — {K(E®®) -+
B(E®™M} << K < b, since E satisfies RSPC. |

ProrosiTioN 2.1.  If E satisfies RSPC, then for non-zero fin &, Z(f) <
K+ b—m.

Proof. Take any fin & and suppose it has exact degree r. Then f is is in
L(Em-1-rm-1) and so by Theorem I and Lemma 2.1,

Z(f) < K(Etm-1-rm-1) { p(Em-l-rm-1)y — (r + )< K+ b—m. |

1t will be convenient to introduce further notation. If #(E) == 0, we define
o = o(E) = K(Em-1-sm-1)) L p(Etm-1-sm-1) — s — |, If F(E)=0, we
define o(E) = 0.

COROLLARY 2.1.  For any E and non-zero f in &, Z(f) < o.
Proof. Since & = FL(Em-1-sm-1) and Em-1-sm-1 gatisfies RSPC,
Z(f) < K(E(m—l——s,m—l)) + b(E(m—l—s,m—l)) —_ (S + 1) = g. I
LemmaA 2.2, For any Eand 1 < o <k,
o(E) = o(Eq,0) + o(E,mn)-

Proof. Let s = s(E), 5, = s(Eq..)) and s, = s(E(.»). We assume,
without loss of generality, that s, = s,. Since S(E(,) C F(E), then s = .
Since Efm-1-#m-1 satisfies RSPC, then by Lemma 2.1, 0(E) = K(E'm-1-%m-1))
+ B(Em-1-sm-1)y _ 5 ] > K(Etm-1-sym=-1) | p(Em-l-sm-D) _ g _ |,

Now

K(E(m—l—sl,m~1)) > K(E((Irfg)l_sl'm—l)) € K(E((z;)l—sg m—l)) — Sy — 1
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and
BE™ oY) 2 BETT ) + bECH "),
So
oE) = K(E™ 7m0 o pEM0m ) — 5y — 1
= K(E((;n;)ksl’m_l)) + b(E(({"(:)l“’l'm_l)) — 5 — 1 + K(EZG—m™)y

+b(Em s 1)) — 5y — 1 = o(Eq,0) + o(Ewp). 1

For any finite set S, we shall denote the number of elements in S by | S'|.

Lemma 2.3. Supposefin S(E, x) vanishes ona set S, where | S N (x;, x;)| =
o(Eg.p), forall 1 <i<j<k. Thenf=0,

Proof. Suppose f # 0 and choose 1 < i <<j < k so that f is oscillating
on (x;, x;) but vanishes on («, x,) and (x, , B) for some o << x;, x; . Define g
in S(Eg,5) so that g(x) = f(x) Vx € (x;, x;). Then A(g) > |8 N (x;, x;)| =
o(E,5), which contradicts Corollary 2.1. ||

PrOPOSITION 2.2. If E satisfies RSPC, then dim & < K + b — m.

Proof. We first construct a set S with | S| = o(E) and | S N (x,, x;))| =
o(E ), for all 1 <i<j<k. Let S, = @. By Lemma 2.2, o(E; ;) =
a(Eq.9) for 1 <i <j < k, and so we may define S, , r =2, 3,..., &, recur-
sively so that S, ,CS,, S, —S,_; C(x,;, x,) and |S,| = o(Ey ). For
1 <i<j<k/|8;|=0(Eqp) = 0(Eq,n) + olEun) =18:| + o(Eq ) and
so [ SN (x;,x)l =18 — 8| =18;1 — 18] = o(Eq,»).

Now suppose dim & > K - b — m. Since E satisfies RSPC, K + b — m =
o(F) by Lemma 2.1 and so dim & > o(E) = | S |. Thus there is a non-zero f
in % which vanishes on S, contradicting Lemma 2.3. ||

COROLLARY 2.2. Forany E,dim & < ¢

Proof. Since F(E) = F(Em-1-sm-D1) and Em-1-sm-1 gatisfies RSPC,
dim y(E(m—l—s,m—l)) < K(E(m——l—-s,m—l)) + b(E(m—-l—s.m—l)) —_— (S + l) — O'(E)
|

Proposition 2.2 can be rephrased in a manner more closely related to the
classical theory of HB interpolation. We define N(E) = {p € mp_y: p(x;) =
0, V(i, j) with e;; = 1}. Then it follows from the general theory of Jerome and
Schumaker [7] that dim & = K — m -+ dim N(E). Thus Proposition 2.2
is equivalent to:



SPLINES AND BIRKHOFF INTERPOLATION 113

PrOPOSITION 2.2*. If E satisfies RSPC, then dim N(E) < b.

When b = 0, this gives a well-known result of Atkinson and Sharma [1].

COROLLARY 2.3. Ifb(E) =0, then dim & = o.

Pl"OOf: dim % = dim y(E(m—l—s,m—l)) — K(E(m—l—s,m~1)) _ (S + 1) +-
dim N(E('m—l—s‘m——l)) — K(E(m—l—s,m—l)) — (S -+ 1) = o, since

p(Em-1-sm-1) — 0, ||

The following result and its proof are direct generalisations of work by
Lee and the author in [6].

ProposiTiON 2.3. If B(E) =0 and o, oy,..., o, are distinct points in
(a, b), r < dim F(E), then there is a non-zero function in S (E) which changes
sign precisely at oy , &y ,..., or , (0 can be taken as + or —).

Proof. First note that, by Corollaries 2.1 and 2.3, for any non-zero f in
F(E), A(f) < dim L(E). We now fix m > 1 and prove by induction in
dim S(E). If dim &(E) = 1, then any non-zero element of ¥(E) has no
change of sign and so the result is true.

Take n > 1 and suppose the result is true for dim #(F) < n. Take E
with dim #(E) =nand oy, oy ,..., a, . If ¥ <1 — 1, we delete 1’s from the
entries of E to give a matrix £ with dim #(£) =n — | and B(E) = 0.
Applying the induction hypothesis to E gives fe #(E) C .#(E) which changes
sign precisely at oy , g 5eey & -

If r = n — 1, then since dim &#(F) == n, we may choose fe & (E) which is
zero at oy , % ..., @, , Where for i = 1, 2,..., k, we define f(x;) = 3{f(x,7) +
S(x:D) If fis oscillating, then since A(f) < n, f must change sign precisely
at oy, ® ,..., &, . On the other hand, if f vanishes on at least one interval in
[a, b, then in each segment (x;, x;) on which fis oscillating, f has less than
dim F(E ;) zeros and so [{oy , q ,..., o} N (0, )] < dim FP(E(; 5). We
can thus apply the inductive hypothesis to each of these segments to obtain
the required result. |

PROPOSITION 2.4. Suppose that for all 1 <i<j <k, dim F(Eyj) =
o(Ey.») and dim & = o > 0. Then for any basis f,, fo,..., fo of &,
det || fi(n)I5 -1 has the same sign for all ) < my < -+ < 7,.

Proof. LetT ={n = (1, Mg 90): N1 < - < 7oa0d [{01, 7 5000y Mo} N
(x;, x3)| = 0(Ey p), forall 1 <<i <i<<j<k}IfneT, then by Lemma 2.3,
the only function in & which vanishes on {%; , 7, ,..., 3.} is the zero function
and so det| fi(n,)lf ;- is non-zero. Next suppose (1, 9z ,..., 7,) ¢ T and
M <M< 7,. Thenforsomel i <<j <k, [{ny, 050 M) N (X, %)) <
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o(Ey ») = dim S(E »). So there is a non-zero function in (£ ;) C &
which vanishes on {», , 9, ,..., 7.} and hence det || fi(n,)llf ;- = 0.

Now fix neT and 1 < ¢ < o. For any number ¢, define £(t)e R° by
&t); =m,, 1 % ¢, and £(t), = t. Suppose £(t) e T for all ¢ in some interval
(¢, d). Define g e & by g(z) = det || f{&(1),]] ;. - Then g(y;) = 0, for i # 7,
and g(t) # 0 for te(c, d). Choose | <a < B <ksothatx, <c<d<x
and g is oscillating on (x, , xz) but vanishes on (y, x,) and (x5, 8) for some
y < xyand 8 > x. Define 2 in F(E, ) so that A(x) = g(x) Vx e (x,, xp).
Then h(g) =0, i %7, and [0y, M see 1} O (s X)] = 0(Eqep) > Z(H),
by Corollary 2.1. Thus 4 can have no zeros or jumps through zero in (x, , x;)
except at », , / # 7. So g(¢) = det || £[€(t)] ;_1 has the same sign throughout
(c, d).

For any 7, £ in T, we write n ~ £ if one can be gained from the other by a
finite number of steps, in each step varying one of the components continu-
ously so that the vector always remains in 7. From our work above we see
that if n ~ £, then || fi(n,)|l ;—; and det || fi(£)Is ;_, have the same sign. Thus
to prove our result it is sufficient to, show that y ~ ¢ for any 5, £ in T.

Take », £ in T and suppose {1y, 7z 5. Mo} N (X1, X))l = &, €5, 3 O
(%1, x,)|. Then we may construct n’ so that n ~ %’ and {9, , 93 ,..., 7.} N
(x1, %) = {&, & senr £ N (X1, Xp). Similarly for i = 2, 3,..., k — 1, we may
construct successively n?, & so that n ~ v’ & ~ & and {n/, 9., 2,3 N
(x1, xi10) = {&7 &by £573 N Xy, Xi49). SO n e~y = -1~ ¢ and the
result is proved. §

COROLLARY 24, If b =0 and dim & = ¢ >0, then for any basis
Ji 5 Ja seees fo OF &, det || fi(m)I2 ;-1 has the same sign for all m, << n, < -+ <7, .

Proof. For any 1 < i <j<k, b(E;;) =0 and so by Corollary 2.3,
dim A(E;) = o(Eq;)- 1

We might be tempted to conjecture that if 5 =0 and dim & = o >0,
then there is a basis f; , f5 ,..., f; of & such that fi() is totally positive on
{1, 2,..., g} x R, ie. for any 5, <7, <+ <1,, every minor of || fi(n)lf ;1
has non-negative determinant. However a counterexample is provided by
the matrix

o
S OO

1
0

[

E =

O - —O
O = =

oll

It can be seen by inspection that #(F) has dimension two and yet does not
contain two linearly independent non-negative functions.
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Total positivity can be achieved by making the rather stringent assumption
that E has no supported blocks, but we do not include a proof.

3. EXISTENCE OF PERFECT SPLINES

We shall use some of the results of Jerome and Schumaker [7]. We note
from [7] that S(E) = D"F (D", A(E)), where D = d/dx and (D™, A(E))
is the class of L,-splines with respect to A(E) for L = D™,

LeEMMA 3.1. Suppose the elements of A = A(E) are linearly dependent when
restricted to m,,_, . Then for any Ay A, 3@ € S(E) such that if fe W,"[a, b]
and X(f) = 0, VA€ A with X # Xy, then \(f) = [ af ™.

Proof. Let Ay, =/ — {Ay}. By the theory of [7], 3g e F (D™, A) with
Afg) =1 and Ag) =0, VAeAd,. Now if gem,_,, A(g) =0 Vied, =
Ao(g) = 0, since the elements of /A are linearly dependent when restricted to
T . Thus g ¢ m,_; and we may write g""’/_[b | g™ =g .. Now take
any fe W,"[a, b] with /\(f) =0Vied,. Then A(f — A(f)g) =0, VAe .
So by Theorem 2. 1 of [7], j {0 — A(gh™} = 0V e &. Putting ¢ =&

gives [oof™ = [ao (g™ = M) |

LemMa 3.2. If f€F(0), then [oof™ =0, Vo € &. Conversely, if for
gelL, [a, b, f,,Qg =0VYw €%, then g = f™ for some fe F(0).

Proof. If fe F(0), it follows from Theorem 2.1 of [7] that f,: gfim =0,
Vo e &.

Now suppose that for ge L, [a, b], fZ@g =0Vy e ¥, and let g = At™,
Let {A;, Az ,..., A,} be a subset of /A which when restricted to =,_, form a
basis for the space spanned by 4 restricted to =,,_; . Then we may choose
peE i,y with A(p) =A(h), i =1, 2,.., n. Putting f=h — p, we have
[ =gand A(f)=0,i=1,2,..., n

Now take Ae A, A¢{A;, Ay ,..., A,}. Then by Lemma 3.1, 3¢ € & such that
Mf) = fi@g =0 and so fe F(0). |

Proof of Theorem 1. The proof is a direct generalisation of that of De
Boor [3] and so we omit full details.

Let I1(f)) ={g € L. [a, b]: szg — [2@f{™, Vo € &} Then by Lemma 3.2,
inff{{ | .: fe F(fy)} = mf{||g||co gell(fy)}. Now if A, is the linear func-
tional on . defined by A(2) = f af§™, Vo € &, then II(f,) can be regarded
as the set of all extensions of A, to contmuous linear functionals on L,[a, b].
So by the Hahn-Banach theorem 3k clI(f)) with || A, = inf{||gll.: g€
()} =1 A ll. If we choose e & with A(h) = || Ay !, then A(?) =] Al
sgn ¢(¢) when ¥(¢) = 0.

640/26/2-2



116 T. N. T. GOODMAN

Using the perturbation technique of De Boor [3] and applying Corollary
2.4, we can choose / to have constant absolute value and less than dim % sign
changes. The result follows. ]

Proof of Theorem 2. The proof is a generalisation of that of Lee and the
author [6] and we omit full details.

For any 1 <</ <k, suppose x € (x,, x,.,). We denote by E, the matrix
(| & I 75!, where é; = e;; for 1 <i<Z, é; =eq_y; for £ <i<k-+1
and é; =38,;. We note that since £ has no semi-supported odd blocks,
b(E,) = 0.

It follows from a result of Atkinson and Sharma [1] that, since E obeys the
Pélya conditions and b(F) = 0, N(E) = 0. Thus the elements of A(E,) are
linearly dependent when restricted to I7,,_; . Thus by Lemma 3.1, 3z € #(E,)
such that

169 = £ = [ $Fm — ), ¥re ) (3.1)

It follows from Corollary 1 of [5] (also Corollary 4 of [6]) that for some
e S(E,) there is a function h, e F(fy) with A{(f) = A sgn i(t) when
P(t) # 0, and that f(x) << h(x) VfeF = {fe F(fy): |f™ |, < A}. Using a
perturbation technique similar to that of De Boor [3] and applying Corollary
2.4 to E,, we can choose ki, so that 2™ has constant absolute value 4 and
less than dim Y(F,) = dim % - 1 sign changes. Similarly 3g, € F(f;) such
that g™ has constant absolute value 4 and less than dim % -+ 1 sign
changes, and g.(x) < f(x), VfeF.

For convenience we call g € F(f;) an extremal function if g has constant
absolute value 4 and less than dim % + 1 sign changes. Now let g be an
extremal function and suppose g™ has less than dim . sign changes. Then
by Proposition 2. 3 3 a non-zero P e & Wthh always has the same sign as
g‘”‘) and so [, g™ —A[o]1P|> | j Of§™ . But geF(f,) implies
f Pglm) = f &f ™ by Lemma 3.2. Thus if g is an extremal function, g¢™
has precisely dim % sign changes.

Now if g is an extremal function, we can apply Proposition 2.3 to give a
non-zero ¥ e F(E,) which changes sign at the same points as g™. By our
above argument, ¥ ¢ % and so we may choose ¥ so that, as in (3.1),

1) = 1) = [ I — o), feF(s).

It follows that either g(x) << f(x) Vfe F or F or f(x) < g(x) Vfe F and so
g(x) = g.(x) or h(x). By the same method as in [6] we may now show that
if two extemal functions coincide at any point other than x, , x, ,..., x;, , then
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they are identical. Thus there are precisely two extremal functions g, /# and
for any feF,

min(g(x), A(x)) < f(x) < max(g(x), h(x)), Vx € (a, b).

The final part of Theorem 2 follows immediately from tlble fact that, by
Lemma 3.2, f € F(f,) implies jZQf‘m’ zfzgf(‘,m’ Ve, and [,0G = fZQf{,’"’

Vo e & implies G = f™ for some fe F(f). 1

As an example of Theorem 2, let E = | ¢;[;_; 75, where e,; =0 for
j=01,..,m—¢—1, some 0 <¢<m, and e; = | elsewhere. If x =
(—1, 1), then F(0) = {fe W, [—1, 11: f(—=1) =0, r =0, 1,.., m — 1,
o) =0,r=m—7¢ m-— ¢+ 1,.., m — 1}. Theorem 2 tells us that for
any A > 0, there is a perfect spline 4 € F(0) with || A || = 4 and at most 7
interior nodes, and + A are the only such functions in F(0). Moreover for
any f'e F(0) with [ £ ||, < 4, [ f(x)] < | h(x)l, Vx e (=1, 1).

In this case . restricted to [—1, 1) coincides with m,_, and so the nodes of
h are the unique set of points o , %, ,..., &, for which

(1) — 2h(o) + 24hag) — =+ A=) ge) -+ (=D (1) == 0,
Vjem. (32)

It can be shown (e.g. by using Lemma 1 of Schoenberg [13]) that (3.2) is
satisfied if o, = —cos(va/(£ + 1)), v = 1, 2,..., £, the zeros of a Chebychev
polynomial of the second kind.

For £ = m — 1, the above example was considered by Louboutin [11]
and Schoenberg [13], who derived properties slightly weaker than those
derived above.
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