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For a function fo in the Sobolev space W",,[a, b], let F(fo) be the set of all func
tions fin Woo[a, b] satisfying the interpolation condition f(j)(Xi} = f~jl(Xi) 'V (i,j)
with eij = 1, where a = Xl < X. < ... < Xk = b and E = II eij 1I~~I' j~..l is an
incidence matrix. We investigate existence and extremal properties of perfect
splines in Fifo) under certain conditions on E.

1. INTRODUCTION

By an incidence matrix we shall mean a matrix of the form E = II eij 11~=lj==ot,

where for all i, j, eij = °or 1. For any incidence matrix E and real vector
x = (Xl' X2 , ... , Xk), Xl < X2 < ... < Xk, we are interested in functions 1
satisfying the interpolation conditions

where the Yl j
) are given constants.

This general form of interpolation was first studied by G. D. Birkhoff [2].
Later Schoenberg [I2] revived interest in such interpolation, which he called
Hermite-Birkhoff (HB) interpolation, and introduced the notion of an
incidence matrix. Since then, HB interpolation has been extensively studied
in the literature.

We shall be concerned particularly with the space /-/' = Y(E) = /I'(E, x) =

{f:11 [Xi' XiH) E 7Tm-I' i = I, 2, ... , k - 1,11(-00, Xl) =11[xn , (0) = 0,
pm-I-il(Xi-) = pm-I-il(Xi+), V(i,j) with eij = O}, where 7Trn - 1 denotes the
class of polynomials of degree at most m - 1. Thus yo comprises spline
functions of degree m - 1 with knots at Xl , X 2 , ... , X k which vanish outside
[Xl' Xk) and whose continuity at the knots is dictated by the matrix E.

In Section 2 of this paper we study various properties of Y, derived
largely from a result of Schumaker [14] concerning bounds for the numbers of
zeros of functions in Y. In Section 3 we then apply some of the results of
Section 2 to prove Theorems I and 2 below.
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In order to state these theorems we shall need some terminology. Following
Schoenberg [12], we sayan incidence matrix E satisfies the Polya condition if

1) Ie

L: L: eo:;::'p + l,p =0, 1, ... ,m - I.
5-0 i~l

By a block in E we mean a sequence {(i, j)}, j = t, {+ I, ... , ( + p - 1
with eo = I V(i, j) in the sequence and ei«(-l) , ei(t+p) -:/= I. The block is
called even or odd as p is even or odd. Following Lorentz and Zeller [10],
we say the block is supported if :3i1 , i2 , A ,j2 with i1 < i < i2 and A, j2 < t
and ei j = ei j = 1. We shall call the block semi-supported if I < i < k and

.:.. 1 2 2

:3i1 ,.i1 , with i1 -:/= i, A < t and ei
1

\ = l.
We denote by W", [a, b] the Sobolev space

{fE C(nl-l)[a, b]: pm-l) abs. cont. andpml E Lro[a, b]}.

For E, x as above, we let a = Xl' b = Xle and define a set of linear func
tional on W""m[a, b] by A = A(E) = p.ij: ei; = l} where Ai;(f) = f(jl(Xi)
For fo E W""m[a, b], we let F(fo) = {fE Wrom[a, b]: A(f) = A(fo), VA EA}.

By a perfect spline on [a, b] of degree m with interior knots at ~1 , ~2 , •.. , ~n

in (a, b), we mean a function of the form

for some real constants ao , a1 , ... , am- 1 and c.
We can now state the main results of Section 3.

TH:EOREM 1. IfE has no supported odd blocks, then F(fo) contains a perfect
spline g of degree m with less than dim Y interior knots and II g(m) II"" =

inf{llf1m ) 11",,:fEF(fo)}·

THEOREM 2. Suppose E satisfies the P6lya conditions and has no semi
supported odd blocks. Then for any A > Ilnm'll",, F(fo) contains precisely two
perfect splines g, h with II glm1llro = II h1mJllro = A and no more than dim ,rJ" = 11

interior knots. For any fEF(fo) with II pm)I!", ~ A,

min(g(x), hex»~ ~ f(x) ~ max(g(x), hex»~, "Ix E (a, b).

Furthermore g(or h) has exactly n interior knots a1 < a 2 < '" < an

which are the unique set of points such that

b b

= A-1 J f~m)l{;' ( or - A-1 J f~m'l{;')' Vl{; with l{;' E S.
a a
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Theorem 1 was proved by Karlin [8] for the case of quasi-Hermite E.
De Boor [3] gave a simple proof for Hermite E and our proof of Theorem I
is a direct generalisation of this. Our proof of Theorem 2 is a generalisation
of the work of Lee and the author in [6], where the result was proved for
Hermite E.

2. SOME PROPERTIES OF [I'(E)

Let E be an incidence matrix and let

m-1 k

K = K(E) = L L eij ,
j=O i=l

For anyfin [I' we denote the number of zeros offby Z(f), where zeros are
counted as in Schumaker [14]. We say f in [I' has exact degree r ifflr) =Ie °
andflr+1l = O. We shall denote by b = b(E) the number of supported odd
blocks in E. The following theorem is a special case of a result of Schumaker
[14], which is an extension and improvement of results of Birkhoff [2],
Ferguson [4] and Lorentz [9].

THEOREM 1 (Schumaker [14]). Iff in [I' has exact degree m - 1, then
Z(f) < K + b - m.

For any incidence matrix E = II eli IIt1 7':01 and for any 1 :S; C\ :S; f3 :S; k,
o :S; y :S; ;) ::;;; m - I, we denote by E~::$i the submatrix II eij ilL, ~=y and put
E(y,5) = E(y·5) E(0,m-1) = E( 0). We say E satisfies the relaxed strong P61ya

(l,k) '(0<,/1) O<,~ .

conditions (RSPC) if K + b ~ m and K(ElO,r» + b(ElO,r» > r + I, r = 0,
I '00" m - 2. As the terminology suggests, these conditions are weaker than
the strong P61ya conditions, e.g. see Sharma [I5]. They can be shown to
reduce to the strong P61ya conditions when b = 0.

Now take any incidence matrix E and suppose f in .'7 has exact degree
m - 1. Then by Theorem I, K + b - m > 0. Also for r = 0, I, ... , m - 2,
flm-1- r)is in [I'(E(o,r) andflm- 1- r ) has exact degree r, So K(ElO,r) - (r + I) >
°and hence E satisfies RSPC.

For any incidence matrix E, we define s = s(E) = max{r: 3fE .Y' with
exact degree r}. Then [I'(E) = [I'(E(m-1-8,m-1) and E(m-1-"m-1) satisfies
RSPC. In practice we may not know the value of s(E) for a given E. However
we can always find by inspection the maximum integer t for which £(m-1-t,m-1)
satisfies RSPC. Then t ~ sand Y = //'(£(m-1-t,m-1». If E(r,m-1) does not
satisfy RSPC for any r = 0, I, ... , m - I, then ,CfJ = 0. Thus when studying
properties of [1'(£), it is sufficient to consider E satisfying RSPC.



SPLINES AND BIRKHOFF INTERPOLATION

LEMMA 2.1. IfE satisfies RSPC, then

K(E<r,m-l») + b(E<r,m-l») + r :s;; K + b, r = 0, 1,... , m - 1.

111

Proof The proof is by induction on r. It is trivially true for r = O.
Assume it is true for r = t, some 0 :s;; t < m - 1. First suppose the first
column of E(·"m-l) contains some 1. Then K(E<s+l,m-l») < K(E(s,m-l») and
b(E(s+l,m-I») :s;; b(E<s.m-l)). So K(ElsH,m-l)) + b(Els+I.m-l») + s + 1 :s;;
K(E(s,m-l») -+- b(E(s,m-l») + s :s;; K + b.

Next suppose that first column of E<s,m-l) contains no 1. Then any sup
ported odd block in E(O,s) is also a supported odd block in E and so bee) ~
b(ElO,S») + b(E(S+l,m-I»). Thus K(s+l.m-l) + b(E(s+l.m-l)) + S + 1 :s;; K(E) 
K(ElO,S») --1_ bee) - b(ElO,s») + s + 1 = K + b + s + 1 - {K(E(O,s») +
b(Ew",»)} < K --1_ b, since E satisfies RSPC. I

PROPOSITION 2.1. If E satisfies RSPC, then lor non-zero I in Y', Z(f) <
K+b-m.

Proof Take any I in Y' and suppose it has exact degree r. Then I is is in
Y'(Elm-l-r,m-l») and so by Theorem I and Lemma 2.1,

Z(f) < K(Elm-l-r,m-l») + b(E(m-l-r.m-l)) - (r + 1) :s;; K + b - m. I

It will be convenient to introduce further notation. If Y'(E) =1= 0, we define
a = aCE) = K(E(m-l-s.m-l») + b(E(m-l-s,m-l») - S - 1. If Y'(E) = 0, we
define aCE) = O.

COROLLARY 2.1. For any E and non-zero I in Y', Z(f) < a.

Proof Since Y' = Y'(Elm-l-s.m-l») and Elm-l-s,m-l) satisfies RSPC,
Z(f) < K(Elm-l-s,m-l») + b(E(m-l-s,m-l)) - (s + 1) = a. I

LEMMA 2.2. For any E and 1 < (X < k,

Proof Let s = see), Sl = s(E<I,ct») and S2 = S(E(ct,k»)' We assume,
without loss of generality, that Sl ~ S2' Since Y(E<I,ct») C Y'(E), then s ~ Sl'

Since E(m-l-s.m-l) satisfies RSPC, then by Lemma 2.1, aCE) = K(E(m-l-s.m-l»)
+ b(E(m-l-s,m-l») - S - 1 ~ K(E<m-l-sl'm-l») + b(E(m-l-s1m-l») - Sl - 1.

Now
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and

So
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ace) ~ K(E(m-1-s"m-1» + b(E(m-1-s,.m-1» - Sl - 1

~ K(E&n:i-s,.m-1» + b(E&n:i-s,.m-1» - Sl - 1 + K(E(;:;/-s2,m-1»

+ b(E(;:;)1-s2 .m-1» - S2 - 1 = a(E(l,I)) + a(E(I),k»' I

For any finite set S, we shall denote the number of elements in S by 1S I.

LEMMA 2.3. Supposefin Y(E, X) vanishes on asetS, where IS n (x;,xj)1 ~
a(E(;.j», for all I ~ i < j ~ k. Then f = O.

Proof Suppose f # 0 and choose 1 ~ i < j ~ k so that f is oscillating
on (x; , Xj) but vanishes on (ex, x;) and (Xj , (3) for some ex < x; , Xj . Define g
in Y(E(i,j» so that g(x) = f(x) Vx E (Xi, Xj). Then A(g) ~ I S n (x, ,xj)1 ~
a(E(i,j», which contradicts Corollary 2.1. I

PROPOSITION 2.2. If E satisfies RSPC, then dim Y ~ K + b - m.

Proof We first construct a set S with lSI = aCE) and IS n (Xi' Xj)1 ~
a(E(;,;» , for all I ~ i <j ~ k. Let Sl = 0. By Lemma 2.2, a(E(l,j» ~

a(E(Li» for 1 < i <j ~ k, and so we may define Sr, r = 2, 3,... , k, recur
sively so that Sr-1 C Sr, Sr - Sr-1 C (xr- 1, xr) and 1 Sr I = a(E(l,r»' For
I < i < j ~ k, ISj I = a(E(l,j» ~ a(E(l,;» + a(E(i,j» = IS; I + a(E(i,j» and
so IS n (x;, X;) 1 = 1 Sj - Si 1 = I Sj I - 1 Si 1 ~ a(E(i,j»'

Now suppose dim Y > K + b - m. Since E satisfies RSPC, K + b - m ~

aCE) by Lemma 2.1 and so dim Y > aCE) = IS I. Thus there is a non-zero f
in Y which vanishes on S, contradicting Lemma 2.3. I

COROLLARY 2.2. For any E, dim Y ~ a.

Proof Since Y(E) = Y(Elm-1-S,m-1» and Elm-1-s,m-1) satisfies RSPC,
dim Y(E(m-1-s.m-1» ~ K(E(m-1-s.m-1» + b(E(m-1-s.m-1» - (s + 1) = aCE).

I
Proposition 2.2 can be rephrased in a manner more closely related to the

classical theory of HB interpolation. We define N(E) = {p E 7Tm -1: p(j)(x;) =
0, V(i,j) with eij = I}. Then it follows from the general theory of Jerome and
Schumaker [7J that dim Y = K - m + dim N(E). Thus Proposition 2.2
is equivalent to:
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PROPOSITION 2.2*. IfE satisfies RSPC, then dim N(E) ~ b.

When b = 0, this gives a well-known result of Atkinson and Sharma [1].

COROLLARY 2.3. If b(E) = 0, then dim [I' = a.

Proof dim [I' = dim [I'(Elm-l-s,m-l») = K(E<m-l-S,m-l)) - (s + 1) +
dim N(Elm-l-s,m-ll) = K(Elm-l-s,m-ll) - (s + 1) = a, since

b(E<m-l-s,m-l») = 0. I

The following result and its proof are direct generalisations of work by
Lee and the author in [6].

PROPOSITION 2.3. If b(E) = ° and aI, a2 ,... , ar are distinct points in
(a, b), r < dim [I'(E), then there is a non-zero function in [I'(E) which changes
sign precisely at al , a2 ,... , ar , (0 can be taken as + or -).

Proof First note that, by Corollaries 2.1 and 2.3, for any non-zero f in
[I'(E), AU) < dim [I'(E). We now fix m ?: 1 and prove by induction in
dim [I'(E). If dim [I'(E) = 1, then any non-zero element of [I'(E) has no
change of sign and so the result is true.

Take n > 1 and suppose the result is true for dim [I'(E) < n. Take E
with dim [I'(E) = nand al , a2 ,... , ar • If r < n - 1, we delete 1's from the
entries of E to give a matrix E with dim [I'(E) = n - 1 and b(E) = 0.
Applying the induction hypothesis to E givesfE [I'(E) C //'(E) which changes
sign precisely at al , a2 ,... , ar •

If r = n - 1, then since dim [I'(E) = n, we may choosefE [I'(E) which is
zero at aI' a2 ,... , ar , where for i = 1,2,... , k, we definef(xi) = Hf(Xi-) +
f(x/)}. Iff is oscillating, then since AU) < n, f must change sign precisely
at aI' a2 ,... , ar • On the other hand, iffvanishes on at least one interval in
[a, b], then in each segment (Xi' X;) on whichfis oscillating,jhas less than
dim [I'(E(i,;») zeros and so I{al' a2 ,... , ar } n (Xi' X;) 1< dim [I'(E(;,;»). We
can thus apply the inductive hypothesis to each of these segments to obtain
the required result. I

PROPOSITION 2.4. Suppose that for all 1 ~ i < j ~ k, dim [I'(E(i,;») =
a(E(i,;») and dim [I' = a > 0. Then for any basis h , f2 ,... , f" of [1',

det 11/;(7];)111',;=1 has the same sign for all 7]1 < 7]2 < ... < 7]".

Proof Let T = {7] = (7]1 , 'YJ2 '00" 'YJ,,): 'YJl < ... < 'YJ" and 1{'YJl , 'YJ2 '00" 'YJ,,} n
(Xi' X;) 1 ?: a(E(i.;»), for all 1 ~ i < i < j ~ k}. If'YJ E T, then by Lemma 2.3,
the only function in [I' which vanishes on {'YJl , 'YJ2 '00" 'YJ,,} is the zero function
and so det 11/;('YJ;)lli,i=l is non-zero. Next suppose ('YJl' 'YJ2 ,..., 'YJ,,) ¢ T and
'YJl < 'YJ2 < ... 'YJ". Then for some 1 ~ i <j ~ k, l{YJl' 'YJ2 ,... , 'YJ,,} n (Xi, X;) 1<
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a(E(i,;) = dim Y(E(i,;)' So there is a non-zero function in Y(E(i,;» k ,51'

which vanishes on {7]1 , 7]2"'" 7),,} and hence det 11/;(7];)117,;=1 = O.
Now fix 7] E T and 1 .::;; t .::;; a. For any number t, define ~(t) E /R" by

~(t)i = 7]i, i 0/= t, and ~(t)v = t. Suppose get) E T for all t in some interval
(c, d). Define g E ,51' by get) = det 1//;[g(t);JIli,;=l . Then g(7]i) = 0, for i 0/= t,
and get) 0/= 0 for t E (c, d). Choose I .::;; ex < f3 .::;; k so that x'" .::;; c < d .::;; XfJ
and g is oscillating on (x", , XfJ) but vanishes on (y, x",) and (XfJ , 8) for some
y < x", and 0 > XfJ . Define h in Y(E(""fJ) so that hex) = g(x) Vx E (x", , XfJ)'
Then h(7]i) = 0, i 0/= t, and 1{7]1' 7]2 '00', 7],,} n (x", , XfJ)1 ;:? a(E("',fJ) > Z(h),
by Corollary 2.1. Thus h can have no zeros or jumps through zero in (x", , XfJ)
except at 7)i , i 0/= t. So get) = det 1//;[~(t)Ji,;=l has the same sign throughout
(c, d).

For any 'lj, gin T, we write n ,...,., g if one can be gained from the other by a
finite number of steps, in each step varying one of the components continu
ously so that the vector always remains in T. From our work above we see
that if 7] ""' g, then 11/;(7]i)lli,;=l and det 11/;(g;)lli,;=l have the same sign. Thus
to prove our result it is sufficient to, show that 7] ""' ~ for any 7), g in T.

Take 'lj, gin T and suppose !{7]1 , TJ2 '00" 7],,} 1\ (Xl' X2)! ;:? !{gl , g2 , , g,,} 1\

(Xl' X2)!' Then we may construct 7)' so that 7] ......, TJ' and {7]~ , 7]~ , , 7)~} 1\

(Xl' X 2) = {gl' g2 ,... , g,,} 1\ (Xl' x 2)· Similarly for i = 2, 3, ... , k - I, we may
construct successively TJ i , e so that 7) ,...,., r/, g ""' gi and {TJli, 7)2i,... , 7],/} 1\

(Xl' Xi+!) = {gli, g2i,... , g"i} 1\ (Xl' Xi+l)' So 7J ......, 7]k-l = e-l ......, g and the
result is proved. I

COROLLARY 2.4. If b = 0 and dim ,51' = a > 0, then for any basis
It ,f.z ,... ,j;, of ,51', det 11/;(7);)lli,i=l has the same sign for all 7]1 < 7)2 < '" < 7)" •

Proof For any 1 .::;; i < j .::;; k, b(E(i,i» = 0 and so by Corollary 2.3,
dim Y(E(i,i ) = a(E(i.i ). I

We might be tempted to conjecture that if b = 0 and dim ,51' = a > 0,
then there is a basis It. ,12 ,... , j;, of ,51' such that /;(7]) is totally positive on
{I, 2,... , a} X /R, i.e. for any 7]1 < 'lj2 < ... < 'Yj", every minor of lI/;('lj;)lli,i=l
has non-negative determinant. However a counterexample is provided by
the matrix

E ~ II~ rr gil
111 0 0 011

It can be seen by inspection that Y(E) has dimension two and yet does not
contain two linearly independent non-negative functions.
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Total positivity can be achieved by making the rather stringent assumption
that E has no supported blocks, but we do not include a proof.

3. EXISTENCE OF PERFECT SPLINES

We shall use some of the results of Jerome and Schumaker [7]. We note
from [7] that .9'(E) = Dm.9'(Dm, A(E)), where D = djdx and .'7(Dm, A(E))
is the class of Lg-splines with respect to A(E) for L = Dm.

LEMMA 3.1. Suppose the elements ofA = A(E) are linearly dependent when
restricted to 17m -1' Thenfor any Ao EA, 30 E .9'(E) such that if fE W",m[a, b]
and A(f) = 0, VA EA with A =1= Ao , then .\o(f) = J: 0f(m).

Proof Let Ao = A - {Ao}. By the theory of [7], 3g E .9'(Dm, A) with
Ao(g) = 1 and A(g) = 0, VA E A o . Now if g E 17m-1' A(g) = 0 VA E Ao ~
Ao(g) = 0, since the elements of A are linearly dependent when restricted to
17m-1' Thus g rt 17m-1 and we may write glm)!J: I g(ml l2 =0 E :7'. Now take
any fE W",m[a, b] with A(f) = 0 VAEAo ' Then A(f - Ao(f)g) = 0, VAEA.
So by Theorem 2.1 of [7], J: lj;{j<ml - Ao(f)g<m)} = 0 Vlj; E.9'. Putting lj; = 0

gives J: 0 pm) = J: 0 Ao(f)g(m) = Ao(f)· I

LEMMA 3.2. If fEF(O), then J:0pm) = 0, "10 E.9'. Conversely, if for
gEL", [a, b], J:0g = 0 "10 E.9', then g = pml for some fE F(O).

Proof If f EF(O), it follows from Theorem 2.1 of [7] that J: 0 I'm) = 0,
"10 E.9'.

Now suppose that for gEL", [a, b], J: 0 g = 0 "10 E .9', and let g = h1ml .
Let {A1 , '\2'"'' An} be a subset of A which when restricted to 17m-1 form a
basis for the space spanned by A restricted to 17m- 1 • Then we may choose
pE17m_1 with A;(p)=A;(h), i=l, 2, ... , n. Puttingf=h-p, we have
pm) = g and A;(f) = 0, i = 1, 2, ... , n.

Now take A EA, Art {A1 , A1 , ... , An}. Then by Lemma 3.1, 30 E .9' such that
A(f) = J:0g = 0 and sofEF(O). I

Proof of Theorem 1. The proof is a direct generalisation of that of De
Boor [3] and so we omit full details.

LetlI(fo) ={g E L",[a, b]: J:0g = J:0f~ml, "10 E .9'}. Then by Lemma 3.2,
inf{llf<mll!",: f EF(fo)} = inf{11 gil",: g ElI(fo)}. Now if Ao is the linear func
tiona10n // defined by '\0(0) = J:0f~m), "10 E.9', then lI(fo) can be regarded
as the set of all extensions of Ao to continuous linear functionals on L 1 [a, b].
So by the Hahn-Banach theorem 3h ElI(fo) with II h II", = inf{11 gil",: g E
lI(fo)} = 11'\0 II· If we choose lj; E.9' with '\o(lj;) = II Ao II, then h(t) = II h II",
sgn lj;(t) when lj;(t) =1= O.



116 T. N. T. GOODMAN

Using the perturbation technique of De Boor [3] and applying Corollary
2.4, we can choose h to have constant absolute value and less than dim !f sign
changes. The result follows. I

Proof of Theorem 2. The proof is a generalisation of that of Lee and the
author [6] and we omit full details.

For any 1 ~ t < k, suppose x E (xv, x(+1)' We denote by E., the matrix
II eij 11~~t ':=0\ where eii = eij for 1 ~ i < t, eii = e(i-l)i for t < i ~ k + 1
and et; = 0oi. We note that since E has no semi-supported odd blocks,
b(E.,) = O.

It follows from a result of Atkinson and Sharma [1] that, since E obeys the
P6lya conditions and b(E) = 0, N(E) = 0. Thus the elements of A(E.,) are
linearly dependent when restricted to IIm - 1 • Thus by Lemma 3.1, 30 E !f(E.,)
such that

f(x) - fo(x) = f cp(j(m) - fr»), 'VfEF(fo)
a

(3.1)

It follows from Corollary 1 of [5] (also Corollary 4 of [6]) that for some
if; E !f(E.,) there is a function h., E F(fo) with h~m)(t) = A sgn if;(t) when
if;(t) "'" 0, and that f(x) ~ h,,{x) 'VfE F = {IE F(fo): Ilpm) 100 ~ A}. Using a
perturbation technique similar to that of De Boor [3] and applying Corollary
2.4 to E., , we can choose h., so that h~m) has constant absolute value A and
less than dim !f(E.,) = dim !f + I sign changes. Similarly 3g., E F(fo) such
that g~m) has constant absolute value A and less than dim !f + I sign
changes, and g,,{x) ~f(x), 'VfEF.

For convenience we call g E F(fo) an extremal function if g(m) has constant
absolute value A and less than dim !f + 1 sign changes. Now let g be an
extremal function and suppose glm) has less than dim !f sign changes. Then
by Proposition 2.3, 3 a non-zero (J> E !f which always has the same sign as
g(m) and so f: (J>glm) = A f: I (J> I > I f: (J>f~m) I. But g E F(jo) impliesf: (J>glm) = f: (J>flt) by Lemma 3.2. Thus if g is an extremal function, g(m)
has precisely dim !f sign changes.

Now if g is an extremal function, we can apply Proposition 2.3 to give a
non-zero lJI E !f(E.,) which changes sign at the same points as g(ml. By our
above argument, lJI rf= !f and so we may choose lJI so that, as in (3.1),

f(x) - fix) = f lJI{j(m) - f~m»), fEF(fo).
a

It follows that either g(x) ~f(x) 'VfEF or F or f(x) ~ g(x) 'VfEF and so
g(x) = g.,{x) or h.,{x). By the same method as in [6] we may now show that
if two external functions coincide at any point other than Xl' X 2 , ••• , Xk, then
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they are identical. Thus there are precisely two extremal functions g, hand
for any fEF,

min(g(x), h(x)) ~ f(x) ~ max(g(x), h(x)), 'Vx E (a, b).

The final part of Theorem 2 follows immediately from the fact that, by
Lemma 3.2,fEF(fo) implies f:0jCmJ = f:0f~m) 'V0 E9', and f:0G = f:0f~m)
"10 E 9' implies G = jCm) for somefEF(fo)' I

As an example of Theorem 2, let E = II eij 11~~l ';:1/' where e2i = °for
j = 0, 1,... , m - t - 1, some °< t ~ m, and eii = 1 elsewhere. If x =
(-I, I), then F(O) = {IE Woom[-I, l):pr)(-I) = 0, r = 0, I, ... , m - I,
[(r)(I) = 0, r = m - t, m - t + I,... , m - I}. Theorem 2 tells us that for
any A > 0, there is a perfect spline h EF(O) with II h(m) II = A and at most t
interior nodes, and ± h are the only such functions in F(O). Moreover for
any fE F(O) with Ilpm) 1100 ~ A, If(x) I ~ Ih(x)l, 'Vx E(-I, I).

In this case 9' restricted to [-I, I) coincides with l7t-l and so the nodes of
h are the unique set of points CXl , CX2 ,... , CXt for which

lj;(-I) - 2lj;(cxl) + 2lj;(CX2) - ... + 2(_I)Ilj;(CXl) + (-I)l+llj;(1) ccc 0,

'V lj; E 171 • (3.2)

It can be shown (e.g. by using Lemma 1 of Schoenberg [13]) that (3.2) is
satisfied if CXv = -COS(Vl7j(t + I)), v = 1,2,... , t, the zeros of a Chebychev
polynomial of the second kind.

For t = m - I, the above example was considered by Louboutin [11]
and Schoenberg [13], who derived properties slightly weaker than those
derived above.
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